Radin deftly weaves a story of postwar scientific method with an account of postcolonial extraction. She shows how a colonial imaginary of frontier exploration and a scientific imaginary of induction, unite in a calling to “discover the unexpected.” Radin depicts Blumberg as a collector of samples, in the mode of a colonial natural historian, for whom the Pacific – and later the world, perhaps the solar system – figured as a living laboratory. Blumberg won the Nobel Prize for his work on Hepatitis B, derived from blood samples of indigenous peoples of the Pacific. As a NASA administrator, Blumberg harnessed a language of “new frontiers” – exploring where no one had yet gone – and language of basic science – seeking the unknown and following curiosity. He imagined a scientific exploration, the extraction and classification of new material, as capital to be realized in some biological future.
The snakeroot plant has traditionally been a tonic in the east to calm patients; it is now used in orthodox medical practice to reduce blood pressure. Doctors in ancient India gave an extract of foxglove to patients with legs swollen by dropsy, an excess of fluid resulting from a weak heart; digitalis, a constituent of foxglove, is now a standard stimulant for the heart. Curare, smeared on the tip of arrows in the Amazonian jungle to paralyze the prey, is an important muscle relaxant in modern surgery.

In the 1830s in Italy, Agostino Bassi traced the silkworm disease muscardine to microorganisms. Meanwhile, in Germany, Theodor Schwann led research on alcoholic fermentation by yeast, proposing that living microorganisms were responsible. Leading chemists, such as Justus von Liebig, seeking solely physicochemical explanations, derided this claim and alleged that Schwann was regressing to vitalism.

During the Renaissance, understanding of anatomy improved, and the microscope was invented. Prior to the 19th century, humorism (also known as humoralism) was thought to explain the cause of disease but it was gradually replaced by the germ theory of disease, leading to effective treatments and even cures for many infectious diseases. Military doctors advanced the methods of trauma treatment and surgery. Public health measures were developed especially in the 19th century as the rapid growth of cities required systematic sanitary measures. Advanced research centers opened in the early 20th century, often connected with major hospitals. The mid-20th century was characterized by new biological treatments, such as antibiotics. These advancements, along with developments in chemistry, genetics, and radiography led to modern medicine. Medicine was heavily professionalized in the 20th century, and new careers opened to women as nurses (from the 1870s) and as physicians (especially after 1970).
A major scourge of the 18th century was smallpox. However in the 18th century people realized that milkmaids who caught cowpox were immune to smallpox. In 1796 Edward Jenner introduced vaccination. (Its name is derived from the Latin word for cow, Vacca). The patient was cut then matter from a cowpox pustule was introduced. The patient gained immunity to smallpox. (Jenner was not the first person to think of this but it was due to his work that it became a common practice). Unfortunately nobody knew how vaccination worked.
The Renaissance brought an intense focus on scholarship to Christian Europe. A major effort to translate the Arabic and Greek scientific works into Latin emerged. Europeans gradually became experts not only in the ancient writings of the Romans and Greeks, but in the contemporary writings of Islamic scientists. During the later centuries of the Renaissance came an increase in experimental investigation, particularly in the field of dissection and body examination, thus advancing our knowledge of human anatomy.[78]

Chris Kresser:  Yeah, that’s great.  The summit, it seems there’s so many great speakers, so many good topics.  I love that there’s a doctor practitioner track.  And I really encourage anyone who’s listening to this to check it out, because there’s a wealth of information there.  It’s really representative of what the future of medicine is going to be.  And there’s a lot of really practical, actionable information that you can use right now to improve your health.  So if you want to check it out, go to ChrisKresser.com/evomed.  That’s E-V-O-M-E-D, ChrisKresser.com/evomed.  And you can register for free for this summit.  You can watch all the talks for free, which is about as good as it gets.  And, yeah, go over there and sign up, and they’ll send you the schedule.

In the American Civil War (1861–65), as was typical of the 19th century, more soldiers died of disease than in battle, and even larger numbers were temporarily incapacitated by wounds, disease and accidents.[131] Conditions were poor in the Confederacy, where doctors and medical supplies were in short supply.[132] The war had a dramatic long-term impact on medicine in the U.S., from surgical technique to hospitals to nursing and to research facilities. Weapon development -particularly the appearance of Springfield Model 1861, mass-produced and much more accurate than muskets led to generals underestimating the risks of long range rifle fire; risks exemplified in the death of John Sedgwick and the disastrous Pickett's Charge. The rifles could shatter bone forcing amputation and longer ranges meant casualties were sometimes not quickly found. Evacuation of the wounded from Second Battle of Bull Run took a week.[133] As in earlier wars, untreated casualties sometimes survived unexpectedly due to maggots debriding the wound -an observation which led to the surgical use of maggots -still a useful method in the absence of effective antibiotics.
Chris Kresser:  Yeah, that’s really exciting to me.  I think another frontier is lab testing.  I mean, that’s one of the, as a practitioner, that’s one of the things that troubles me the most, is how expensive these labs are.  And in a lot of cases, the insurance isn’t covering them because they don’t deem them to be medically necessary, which just makes me want to pull my hair out, because of course, you know, if we do these labs and we identify the underlying problems initially, we’re potentially heading off tens of thousands of dollars, if not more, in medical costs to the insurance company later on down the line.  So I guess it just depends on how you define medically necessary, but that’s a whole different discussion.  Some of these labs can be hundreds or even thousands of dollars.  So I know there are some pretty exciting, new movements out there to make this lab testing more affordable financially.  And then some of the tech tools that are becoming available, like the Quantified Self Revolution, that could really help in terms of not only gathering the necessary data, but organizing it and then presenting it back to the clinician in a way that makes sense and makes it easy for the clinician to track progress.  So I know this is an area of interest for both us, James.  Maybe you could talk a little bit about some of them, the more exciting technologies that you’ve seen, and that people have talked about in the summit.
Last time we featured her, the Evolution of Medicine community showed support and interest that made a real difference. Thank you! We bring her back this week to share an update about Organize.  She and her team were recently at the White House to speak about their project with some important influencers from the industry.  She shares with us what she learned and what they were able to accomplish.
The hygiene of the training and field camps was poor, especially at the beginning of the war when men who had seldom been far from home were brought together for training with thousands of strangers. First came epidemics of the childhood diseases of chicken pox, mumps, whooping cough, and, especially, measles. Operations in the South meant a dangerous and new disease environment, bringing diarrhea, dysentery, typhoid fever, and malaria. There were no antibiotics, so the surgeons prescribed coffee, whiskey, and quinine. Harsh weather, bad water, inadequate shelter in winter quarters, poor policing of camps, and dirty camp hospitals took their toll.[134]

The sexual revolution included taboo-breaking research in human sexuality such as the 1948 and 1953 Kinsey reports, invention of hormonal contraception, and the normalization of abortion and homosexuality in many countries. Family planning has promoted a demographic transition in most of the world. With threatening sexually transmitted infections, not least HIV, use of barrier contraception has become imperative. The struggle against HIV has improved antiretroviral treatments.
Evolutionary principles may also improve our vaccine strategy. Vaccines are another way to create selective pressures on infectious organisms. We may inadvertently target vaccines against proteins that select out less virulent strains, selecting for the more virulent or infectious strains. Understanding of this allows us to instead target vaccines against virulence without targeting less deadly strains.
1950s: A series of successful anti-psychotic drugs are introduced that do not cure psychosis but control its symptoms. The first of the anti-psychotics, the major class of drug used to treat psychosis, is discovered in France in 1952 and is named chlorpromazine (Thorazine). Studies show that 70 percent of patients with schizophrenia clearly improve on anti-psychotic drugs.